The Uncertain Generalized Moment Problem with Complexity Constraint
نویسندگان
چکیده
This paper is dedicated to Arthur Krener – a great researcher, a great teacher and a great friend – on the occasion of his 60th birthday. In this work we study the generalized moment problem with complexity constraints in the case where the actual values of the moments are uncertain. For example, in spectral estimation the moments correspond to estimates of covariance lags computed from a finite observation record, which inevitably leads to statistical errors, a problem studied earlier by Shankwitz and Georgiou. Our approach is a combination of methods drawn from optimization and the differentiable approach to geometry and topology. In particular, we give an intrinsic geometric derivation of the Legendre transform and use it to describe convexity properties of the solution to the generalized moment problems as the moments vary over an arbitrary compact convex set of possible values. This is also interpreted in terms of minimizing the Kullback-Leibler divergence for the generalized moment problem.
منابع مشابه
An iterative method for the Hermitian-generalized Hamiltonian solutions to the inverse problem AX=B with a submatrix constraint
In this paper, an iterative method is proposed for solving the matrix inverse problem $AX=B$ for Hermitian-generalized Hamiltonian matrices with a submatrix constraint. By this iterative method, for any initial matrix $A_0$, a solution $A^*$ can be obtained in finite iteration steps in the absence of roundoff errors, and the solution with least norm can be obtained by choosing a special kind of...
متن کاملThe Generalized Moment Problem with Complexity Constraint
In this paper, we present a synthesis of our differentiable approach to the generalized moment problem, an approach which begins with a reformulation in terms of differential forms and which ultimately ends up with a canonically derived, strictly convex optimization problem. Engineering applications typically demand a solution that is the ratio of functions in certain finite dimensional vector ...
متن کاملA Linear Matrix Inequality (LMI) Approach to Robust Model Predictive Control (RMPC) Design in Nonlinear Uncertain Systems Subjected to Control Input Constraint
In this paper, a robust model predictive control (MPC) algorithm is addressed for nonlinear uncertain systems in presence of the control input constraint. For achieving this goal, firstly, the additive and polytopic uncertainties are formulated in the nonlinear uncertain systems. Then, the control policy can be demonstrated as a state feedback control law in order to minimize a given cost funct...
متن کاملA Lagrangian Decomposition Algorithm for Robust Green Transportation Location Problem
In this paper, a green transportation location problem is considered with uncertain demand parameter. Increasing robustness influences the number of trucks for sending goods and products, caused consequently, increase the air pollution. In this paper, two green approaches are introduced which demand is the main uncertain parameter in both. These approaches are addressed to provide a trade-off b...
متن کاملConvex Generalized Semi-Infinite Programming Problems with Constraint Sets: Necessary Conditions
We consider generalized semi-infinite programming problems in which the index set of the inequality constraints depends on the decision vector and all emerging functions are assumed to be convex. Considering a lower level constraint qualification, we derive a formula for estimating the subdifferential of the value function. Finally, we establish the Fritz-John necessary optimality con...
متن کامل